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Figure 5.42. Effect of Pulse Spacing, Pull Downs - 67 Pulse Spacing

(a) Tax (b) IOPt

Figure 5.43. Effect of Pulse Spacing, Pull Downs - 1.757 Pulse Spacing
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Figure 5.46. Effect of Pulse Spacing, Pull Downs - Continuous Pulsing, No Spacing

[5.1] uses module level data. Both types of input data are used as inputs to thermo-
electric models. As a example, in Table for reporting a Seebeck coefficient used
for modeling ATpuse, Table says to report three significant figures. This will
provide the reader of the reported data one decimal place of accuracy on the output.
All numbers in the tables are the number of significant figures needed for a particular
model input that would provide one decimal place of accuracy on the output. Ad-
ditional significant figures would be needed but not reported in these tables if more
than one decimal place of accuracy on the output is desired. Without these guidelines
it may be tempting to round the input data in a technical report, which will render
reproduction of results difficult.

89



Table 5.1. Module Properties Sensitivity

Module Properties (Input Data)

Inax [amps] Ty [K] Vinaz [V] ATmapc [K]

Steady State Temperature [K] 2 2 3
ATyax [K] 2

Min Temperature [K] 2
ACrpulse [K} 1

Time to Min Temperature [s] 2
Holding Time [s] 3
Transient Advantage [Ks] 4
2

1

3

2

5

1

Z,
>

Maximum Temperature Overshoot [K]
A/Tpost pulse [K]
Time to Maximum Temperature Overshoot [s]
Settling Time [s]
Transient Penalty [Ks]
Pulse Cooling Enhancement [unitless]
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Chapter 6. Conclusions and
Recommendations

Thermoelectric cooling has many advantages over vapor compression cooling. Typi-
cally cost is not an advantage when looking at thermoelectric systems that provide
more than approximately 200-600 watts of cooling power. If the efficiency or capacity
of thermoelectric coolers could be improved, they would become more competitive
with vapor compression systems. The possibility of a wider range of new and exciting
thermal management applications could be realized.

Much research is focused on improving thermoelectric performance with enhanced
semiconductor materials. Recent research points to a potential cooling capacity in-
crease with pulsed operation. The study of pulsed transient operation could lead to
performance gains that are synergistic with materials research.

6.1 Originality of Work

For this work, transient thermoelectric pulse cooling research was performed with
modeling studies. Two main focuses where the modeling of a single free standing
thermocouple and modeling of a system. The system consisted of a full sized pulse
cooler module interfaced with a heat generating mass.

Previous studies have focused on pulse cooling of a couple from the perspective of
changing one variable at a time. This work looks at pulse cooling from the perspective
of response surfaces and how multiple variables interact over a wide range of varia-
tion. These interactions are not always intuitive. The interaction of the independent
variables pulse-height and pulse on-time were studied.

Previous studies start the current pulse from a steady state current of I,,,.. This
thermocouple study looked at the effects of starting pulses from I,,,,, and I, and
compared the two.

A previous study defined the terms Transient Advantage and Transient Penalty. This
study defines Net Transient Advantage to find the combination of pulse-height and
pulse on-time that provides the largest positive difference between Transient Advan-
tage and Transient Penalty.
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A previous study touched on the impact of pulse cooling with an isosceles triangle
shaped current pulse. This pulse shape was the main focus of this study.

From a system modeling standpoint, previous studies looked at the effect of cooling
small masses with no internal heat generation. New features of this work include look-
ing at the effects of changing system variables: continuously repeated pulse cooling
analysis, addition of convection boundary conditions, a relatively large mass compared
with the cooler, thermal insulation, interface resistance, heat spreader and internal
heat generation in the mass.

This study also looked at pulse cooling from a new perspective. Rather than defining
performance parameters from a temperature vs. time perspective, this study charac-
terized performance from a @., P;, and COP standpoint. Additional knowledge was
gained by operating at I, steady current before the pulse. Previous studies used
only I,,., operation.

The models for this study used electrical-thermal analogies with SPICE electrical
circuit simulation software. These models used distributed mass and heat generation
and 1D, 2D and 3D arrangements to model the thermocouple, module and system.

6.1.1 Key Findings - Thermocouple Model

There is not always a temperature overshoot with transient operation. The same pulse
shape can provide a transient operation with and without a temperature overshoot.
Previous studies attributed the lack of a temperature overshoot to the pulse shape
alone. No overshoot occurs when the heat leaving T, stays greater than the heat
entering 7, throughout the pulse event. If the Joule heat reaching T is greater than
the magnitude of Peltier cooling leaving T, the temperature at 7T, increases. If this
happens for a long enough time, the temperature will increase above the steady state
temperature and by definition cause and overshoot. The overshoot is a function of
pulse shape and the magnitude of current and pulse on-time.

With the response surfaces generated, a desired outcome can be chosen for one surface
and the trade offs required will be seen from other surfaces at the same combination
of independent variables.

For the independent variables studied, sometimes pulse on-time has a linear effect
to the dependent variable and sometimes a nonlinear effect. The effect of changing
pulse-height always has a non-linear effect for the parameters studied here.

Studying Net Transient Advantage, there was found a range of transient operating
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conditions where (). is improved over steady operation. The advantage came from
pulses starting from I,,,q, steady current. Starting current pulses from /,,, did show
increased (). early in the pulse but a larger decrease in (). later in the pulse, therefore,
there was no net advantage.

6.1.2 Key Findings - System Model

The main physics of the steady state equations still apply to transient operation,
however each term in the steady state equations has a variable amount of time sepa-
ration from one another for transient operation. The steady state equations are also
lumped equations. To capture the effects of transient operation, it is necessary to use
distributed mass and heat generation 1D models.

COP drops when electrical current increases sharply. During this electrical current
increase, power input to a device takes place instantly. Q. is time delayed due to
thermal resistance limited heat transfer. Since COP is defined by Q./P;, this causes
a large drop in COP under transient conditions. A further COP drop comes when
Q¢ is reduced by Joule heat that ramps up throughout the pulse. The bulk of the
Joule heat is time delayed from reaching 7.

COP can be negative during a pulse if the magnitude of the pulse is such that the
magnitude of Joule heat reaching 7, is higher than the magnitude of Peltier cooling
leaving T..

Low thermal interfaces resistance between the device and the heat spreader and heat
spreader to the mass are known to improve heat transfer due to less resistance to heat
flow. These are not always the highest (). and highest COP during transient pulsed
operation. When high interface resistances are used, T, becomes colder during the
first part of the pulse due to the inability to pull heat from a farther distance. At
this point Joule heat is pulled from the thermoelement. More Joule heat pulled out
earlier translates to less Joule heat pulled later. This increases (). and COP later in
the pulse.

Certain pulses starting from I,,,,, can provide a net increase in (). over steady state
operation. No pulse starting from I,, steady operation can provide a net cooling
increase over steady I,, operation. The reason is, above I, current, the Joule
heating produced is higher than the Peltier cooling heat removed over the full pulse
event. Unlike steady operation, for transient operation ()¢ can be increased over ().
of steady operation but only for a short time.

Increasing the amount of time the pulse is left on increases the average current input
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to the device. (. increases with more on-time if the average current of the pulse
is below I,,. Increasing the on-time indefinitely tends toward changing the input
current to a higher and steady state value. Operating at higher currents, even if
below I, provides a higher proportion of Joule heat to 7.. This decreases COP
because Q). goes down and P, goes up.

The temperature distribution in the thermoelement is an upside down parabola with
highest temperature at the center. This parabolic shape is due to internal heat gen-
eration. The temperature at the center increases with increased current flow through
the thermoelement. For a module with good heat flow at T}, and T, the temperatures
at Ty, and T, do not change significantly during the pulse. When T}, equals T,, the
parabolic temperature gradient is such that 50% of the Joule heat conducts to T}
and 50% conducts to T,. If T}, is greater than T, the peak of parabolic temperature
gradient shifts toward Tj,. This changes the proportion of thermal conduction in the
thermoelement that goes to T}, and what goes to T,.. There appears to be a limit for
how far the peak of the parabola can be shifted by changing 7}, or T..

Increasing the effusivity of the mass and thermal conductivity of the heat spreader
within the range of the study meets a point of diminishing returns for ).. This
may be a limitation of the heat transfer in the rest of the system. Changing the
interface resistance between the heat spreader and the mass did not meet a point of
diminishing returns. This may indicate a big opportunity for improving performance
of the system.

Changes in system parameters have a similar effect to steady state operation as they
have during a current pulse in terms of average mass temperature change.

Increasing the internal heat generation of the mass increases the temperature at 7..
T}, stays relatively constant. Raising the temperature of T, raises the amount of @),
lowers the amount of P;, and raises COP.

Changes in the internal heat generation of the mass were studied. For some of the
lower heat generation rates, a small increase in COP was seen during the first 0.5
to 1 seconds of the pulse. This behavior is not fully understood at this time. This
does indicate that under the right conditions, COP for transient operation may be
improvable over steady state operation. Finding this condition was one of the main
goals of this study.

For quasi-steady-state operation of continuous pulsing current, performance param-
eters can be calculated as the aggregate of what happens during the transient pulse
and what happens during steady state temperature operation between the pulses.
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Average performance of a continuous pulsing cooler tends toward steady state with
more steady state time in between pulses. Average performance tends toward tran-
sient performance as the steady state time between pulses decreases toward zero. If
pulses are continuous from a current standpoint with no steady state time in between,
Joule heat from the first pulse does not have time to fully diffuse. This increases the
proportion of Joule heat reaching T, for each pulse and (). decreases.

For continuous pulsing during pull-downs, ). and COP are increased over quasi-
steady-state continuous pulsed operation and performance decreases as the mass cools
with time. This happens because the temperature of the mass is warmer than 7}, so
thermal conduction through the thermoelement is in a favorable direction during pull-
downs. P, is reduced due to the Seebeck effect which helps lower power consumption
under those conditions.

6.2 Future Work

It was seen that for higher interfaces resistance provided more Q). and a higher COP
for part of the transient pulse event than lower interfaces resistance. A future study
might look at the net impact of thermal interface resistance over a transient cycle.
Rather than assume that lower thermal interface resistance is higher ). and COP,
there may be an optimal thermal interface resistance for transient operation that
depends on the transient cycle. Knowledge of optimal thermal interface resistance
during transient operation could save unneeded expense of using exotic thermal in-
terface materials.

It was seen early on in the model development that holding the figure of merit Z
constant while variably mixing the ratios of Seebeck coefficient, resistivity, and ther-
mal conductivity can change the time required to return to steady state. From a
design standpoint, transient penalty may be difficult to eliminate. It is possible the
Transient Penalty may be reduced by using material properties with an optimum mix
of Seebeck coefficient, resistivity and thermal conductivity. Optimizing the material
for minimum Transient Penalty or optimizing any of the transient characterizations
could be a topic of future study.

Future parallel paths to materials research should consider novel ways to decrease
joule heat or preferentially send it to the hot side of the device.

There was seen a very small increase in COP within the first 0.5 to one second of
the pulse during the study of variable internal heat generation of the mass connected
to the thermoelectric module. This phenomenon should be studied in more detail.
It is apparent that (). is increasing faster than P, for this short time. Knowledge
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of why this happens and under what range of conditions could lead to a transient
performance increase over steady state operation.

The accuracy of the SPICE model could be improved by making the Peltier effect
temperature dependent. Currently the model uses a predetermined T, which is the
desired steady state mass temperature. Including temperature dependence would
improve the transient accuracy of the model. This is especially the case for the
couple model because the change in T is much greater than for the system model.

Currently the convection heat transfer coefficients related to the mass and insulation
are predetermined for the intended mass operating temperature. A future model
improvement would be to design the convection coefficients to automatically update
as mass and ambient temperatures change.
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